The Economics of Biotechnology under Ecosystems Disruption

Diemuth E. Pemsl\(^1\), Hermann Waibel\(^2\), and Andrew Paul Gutierrez\(^3\)

\(^1\) Formerly, Research Associate, Chair of Development and Agricultural Economics, Faculty of Economics and Management, University of Hannover, Germany

\(^2\) Professor, Chair of Development and Agricultural Economics, Faculty of Economics and Management, University of Hannover, Germany

\(^3\) University of California at Berkeley, USA

Abstract

The economic analysis of chemical pesticides has shown that the interactions between plants, pests, the damage control technology and the state of the ecosystem are important variables to be considered. Hence, to assess the profitability of biotechnology in crop protection a bio-economic modelling approach can be useful. Such model was used for the assessment of Bt variety- and pesticide-based control strategies of the cotton bollworm in China. The model simulates the growth of the cotton plant, as well as the mass dynamics of pest and natural enemy populations and their interactions as major input for stochastic partial budgeting of alternative control strategies.

Results show, that (1) productivity effects of damage control agents largely depend on the prevalence of beneficial organisms in the crop ecosystem, and (2) the profitability of damage control measures increases with the initial degree of ecosystem disturbance. The findings highlight the importance of the choice of a counterfactual scenario in the assessment of the impact of agricultural biotechnology. Also, some doubts are raised whether the benefits, which were attributed to Bt cotton varieties based on cross section comparisons, are realistic.

Keywords: Q57, Q55, O13, O3 (JEL code)
1. Introduction

Some fifty years ago, scientists were enthusiastic about the introduction of synthetic pesticides in agriculture to solve the world’s food problem. Scientists and policy makers have voiced equal optimism about the prospects of biotechnology. While for pesticides many negative effects became known, intriguingly some see biotechnology in crop protection now as a solution to the very problems that pesticide use has created. Experience gained with economic analysis of pesticides can provide a useful guide for the issues that need to be addressed when assessing the impact of biotechnology in crop protection (Zadoks and Waibel, 2000).

There are at least three concerns that have emerged from the use of pesticides: (1) pesticides do not only kill pests but they also disturb the ecological balance by diminishing the populations of beneficial organisms (predators and parasites that provide natural control of pests), (2) intensive regulation is required to reduce potentially negative effects on environment and human health and to guarantee quality standards under which effectiveness is assured. However, reality in the developing countries has shown that implementation of an effective regulatory framework is extremely difficult and could not prevent, for example, adulteration of pesticide products. Finally, (3) promotion of pesticides as easy and single solutions to pest problems has led farmers into path dependency and has raised the hurdles of adopting integrated pest management technologies (Cowan and Gunby, 1996).

Applying the “lessons” from the economic analysis of pesticides to the case of insect resistant Bt crops reveals insights for the assessment of costs and benefits of this technology. Numerous economic studies conducted in recent years concluded high benefits and good prospects for the Bt technology (mainly in cotton and maize) in the USA (Carpenter and Gianessi, 2001), Australia (Fitt, 2000), Argentina (Qaim and Traxler, 2005) China (Huang et al., 2002), South Africa (Thirtle et al., 2003) and other parts of Africa (Qaim and Zilberman, 2003; de Groote, 2005). In many of these studies, econometric methods are applied to cross sectional data from farm surveys or experimental data. While production economic methods can provide a good assessment of the static productivity of pest control agents (and other inputs) they are less suitable to capture the interaction between control decisions and dynamic ecosystem reactions. Furthermore, such methods are limited in reflecting the influence of institutional settings that need to be in place if biotechnology solutions are to live up to their

1 Varieties that contain a gene from the soil bacterium Bacillus thuringiensis and produce an endo-toxin that is lethal for certain insect pests.
potential. For example, in China a large number of transgenic cotton varieties have quickly entered the seed market and maintaining quality has become a problem (Pemsl et al., 2005).

A complementary tool to the production and damage control function approach (Zilberman and Lichtenberg, 1986) is bio-economic modelling. Such models allow the derivation of the production function from the biological processes that govern the agro-ecosystem (Wossink and Rossing, 1998). In this approach, the state of the ecosystem as well as different institutional conditions, are taken into account using scenario analysis. Thus, the relative advantage of new pest control technologies such as Bt varieties is assessed in a dynamic perspective.

In this paper, we introduce a bio-economic model that combines cotton bollworm dynamics with stochastic budgeting of bollworm control strategies reflecting the agro-ecosystem conditions in a major cotton growing area, in Shandong province, Northern China. The model aims to reflect the reality of cotton planting several years after the introduction of Bt cotton varieties in China. It captures a situation of multiple damaging agents and accounts for the prevailing natural resource conditions as reflected by the presence of beneficial organisms. A cotton growth experiment was used to calibrate the biological model. Farm surveys conducted by the authors (Pemsl et al., 2005) and other researchers (Pray et al., 2002; Yang et al., 2005) revealed high levels of insecticide applications by (Bt) cotton farmers in China, indicating probable ecosystem disturbances, which may influence the effectiveness of pest control measures. A specific problem with the use of Bt varieties in developing countries is the authenticity and quality of seeds. Evidence of adulteration has been documented in India (Morse et al., 2005) and China (Pemsl et al., 2005), both countries where regulation of input markets is low and enforcement of intellectual property rights is difficult. Data collected for cotton Bt toxin leaf testing in 150 cotton fields in 2002 in Shandong Province showed that the majority of farmers were using cheap Bt cotton seeds that showed a low Bt toxin concentration2 (Pemsl et al., 2005).

The economic component of the presented bio-economic model reflects the features of the technology as found under farm conditions and includes product and factor prices prevailing in the Shandong area in 2002.

2 Bt toxin tests were conducted by Prof. Dr. Wu Kongming, Chinese Academy of Agricultural Sciences, Beijing.
2. Theoretical background

Damage control agents such as chemical pesticides, beneficial organisms and resistant varieties depend on the stock of natural resources that govern the productivity of an open3 agro-ecosystem. Pesticides and resistant varieties (regardless whether created by conventional breeding or by genetic modification techniques) are interacting with the natural environment when applied in the field. Pest control agents’ impact on two natural resources, namely: (1) the beneficial organisms that provide a natural control of pests, and (2) the susceptibility of pests towards the control agent, defined as the absence of resistance at the point of technology introduction. Optimal use of pest control agents thus corresponds with the economic problem of managing exhaustible resources, i.e. how to allocate resource stocks over time (Dasgupta and Heal, 1979). Extracting a unit of the resource today implies that there is less of it in the future; hence, user costs exist in addition to the direct costs4 of the control agent. Furthermore, for common property resources producers do not perceive their actions to influence the stock of these resources and as a result operate in a myopic optimisation framework. This can lead to an overuse of natural resources that is reflected in a rapidly rising net price of the resource (Hotelling, 1931), which makes to reach the price of an alternative technology (choke price) faster. In the case of pesticides, the net price of the natural resources is reflected in a rising marginal product (Lichtenberg and Zilberman, 1986). Therefore, current levels of pesticide use can pre-determine higher use levels in the future (Fleischer, 2000). For example, the high use of pesticides in some cropping systems (the diamond back moth in tropical vegetables is a typical case) was triggered by prior misguided pest control interventions, which has led to what is called the pesticide spiral (van den Bosch, 1978). Degradation of natural resources in pest control also can “stimulate” the introduction of new pest management technologies such as transgenic varieties. For example, Bt cotton was introduced in China at the height of an outbreak of the cotton bollworm (Wu and Guo, 2005), which may partly explain its rapid diffusion.

Taking account of natural resource processes has consequences for the assessment of the productivity and the benefits of new pest control technologies. The impact of a new damage control agent is influenced by the state of the ecosystem in which the technology is introduced. Thus, if the technology is introduced in a highly disrupted ecosystem i.e. a reduced capacity of beneficial organism to control pests (Gutierrez and Ponsard, 2006) its

3 Contrary to protected production (e.g. in glasshouses) where the environment is totally controllable.

4 The extraction costs are the decreasing value of the resource, while user costs are inter-temporal opportunity costs or the option value of the control method available in the future.
short-term benefits may be high but the “life span” of the technology and thus its total benefits may be low. This is the case when the institutional settings that let to the disruption of the ecosystem in the first place are still the same and the technology itself can do nothing to improve these conditions. Thus, a major question is whether Bt crops in the developing countries can really lead the way out of the (pesticide) spiral or steer into yet another (gene) spiral?

The theory of natural resources and the conclusions that can be drawn from the economic analysis of pesticide use suggest that a bio-economic modelling approach, which takes account of the degree of ecosystem disruption and the institutional conditions governing the use of pest control inputs, can complement existing impact assessments of Bt cotton.

3. The Model

The bio-economic model, developed to address the issues raised above, consists of two major components: (i) a biological-ecosystem model that simulates the growth of the cotton plant, as well as mass dynamics of pest and beneficial organism populations and their interactions. Pest control strategies are analyzed, the simulated output being the cotton yield for each control strategy; (ii) a stochastic partial budgeting model, using the yields generated by the biological-ecosystem model, the control costs for the respective control strategy and the cotton price to compute the net revenue of the different control strategies.

An existing biological-ecosystem model for cotton was calibrated to the conditions of the study location in Shandong Province, China. This section of the paper summarises the general model structure. A detailed description of the model and references that validate the assumptions are given elsewhere (Gutierrez et al., 1975; Gutierrez et al., 2006; Gutierrez and Ponsard, 2006). The mass and number dynamics of the cotton plant and all insect populations (pests and beneficial organisms) that are mainly driven by the observed weather are simulated. The cotton plant model consists of several plant subunit models (i.e. leaf, stem, root, and fruit), which are linked via a metabolic pool from with photosynthate is allocated to the subunits according to priority. For the simulation, it is assumed that all agronomic factors (such as fertilizer and irrigation) are constant and none limiting. Equation (1) shows the main structure of the cotton plant model. Cotton yield \(Y_{\text{Cot}} \) is a function of reproductive and

5 To generate the data needed for the adaptation of the model, a cotton-growth experiment was conducted at the study site in 2002. The experiment provides information on plant growth (weekly dry-weight by subunit and yield) and pest damage as well as counts of pests and predators.

6 Climatic data (minimum and maximum daily temperature) for the 2002 and monthly averages for the past 10 years were available from the meteorological station in Linqing County, Shandong Province.
vegetative growth \((GR)\), loss due to pests \((L)\), and other factors \((Z)\) that include plant varieties, control technology and location specific characteristics.

\[
Y_{cotton} = f(GR, L, Z) \tag{1}
\]

The reproductive and vegetative growth \((GR)\) is computed as:

\[
GR(t) = (\phi(t) (D(t) \beta - Q_{10}) \lambda
\]

with the maximum demands \((D)\) scaled by the product of all supply-demands ratios of essential resources \((\phi)\) such as light, soil moisture and nitrogen, and then allocated in priority order to wastage \((1-\beta)\), respiration (i.e. \(Q_{10}\)), and costs of conversion \((\lambda)\) (see Gutierrez and Ponsard, 2006). Cotton and its pests are poikilotherms, i.e. body temperature and activity level depends on the surrounding temperature, and hence time and age in the model are in physiological time units (day-degrees). The plant model also captures the varying concentration of Bt toxin over time and for the different plant subunits.

Yield loss from pests \((L)\) is a function of plant growth \((GR)\) and pest populations \((P_{pest})\)

\[
L = f(GR, P_{pest}) \tag{3}
\]

The similarity of the resource acquisition and allocation biology across plant and animal species allows a generic model structure to be used for analogous processes (Gutierrez and Baumgartner, 1984). A time invariant form of the model is used for Bt immune pests (e.g. Lygus and whitefly), while a time-varying distributed maturation time model is used for all noctuid species to accommodate the time-varying Bt concentrations in their food that affect developmental times, fecundity and survival. Pest dynamics modules are integrated in the system in a way that there is feedback between pest attack and plant compensation and the model includes pest time-varying preferences for plant subunits.

Population dynamics \((P_{pest})\) is modelled for cotton bollworm and other relevant pests. \(P_{pest}\) depends on the climatic conditions \((T)\), the reproductive and vegetative growth \((GR)\) of cotton subunits as the host plants, the effect of beneficial organisms \((P_{BO})\), the in- and out-migration \((M)\) of insects and the use of pest control technologies \((C)\) including Bt varieties and insecticides.

\[
P_{pest} = f(T, GR, P_{BO}, C, M) \tag{4}
\]

Beneficial organisms or predators \((P_{pred})\) are a function of the ecosystem and technology factors and interact with pest populations:

\[
P_{pred} = f(T, P_{pest}, C, M) \tag{5}
\]
Both pesticides and the Bt toxin are included in the model (as captured in C). Their effects are complementary for both pests and beneficial organisms.

Two different types of Bt based control strategies were included in the model, i.e. low quality (= low price) and high quality (= high price) Bt seeds. Low quality was modelled via a change in the scalar of pest susceptibility relative to high quality Bt seeds. Ecosystem disruption was incorporated in the model in three discrete steps, i.e. zero, 50% and 75% implying corresponding levels of beneficial organism activity reduction.

Table 1 cotton bollworm control strategies are described as combination of three different seed choices (high or low quality Bt, conventional varieties) and three intensity levels of insecticide use (no spray, moderate spray, farmers’ practice), is simulated. These are compared against natural control (no pesticides, conventional seeds). For each control strategy, simulation runs of the biological (ecosystems) model with stochastic climatic conditions are conducted for 20 consecutive years providing yield distributions for the control strategies. Fitted normal distributions of yields provide the link with the stochastic partial budgeting model that generates the net revenues of pest control strategies.

The net revenue (NR) for each of j pest control strategies (NR_j) is the monetary value of the prevented yield loss less control costs. Thus the NR_j is a function of the change in cotton yield (ΔY_{cot}) of the strategy as compared to the baseline natural control, the cotton price (p_Y), the pest control strategy (C) and their unit costs (p_C), and the interest rate (i) to account for the opportunity costs of capital.

$$NR_j = f(\Delta Y_{cot}, C, i, p_Y, p_C)$$ \hspace{1cm} (6)$$

The price of cotton (p_Y) is assumed to be identical for Bt and non-Bt cotton. The costs for the control strategies comprise of costs of insecticides and associated human health costs, labour costs for spraying and the technology premium for Bt varieties.

To account for the stochastic nature of the input variables for the partial budgeting model (yield and prices), the underlying probability distributions are used in Monte Carlo simulations.

7 The build-up of pest resistance is not included in the model as it is suggested that the high diversity of the farming systems in the study area provides sufficient refuge for susceptible pests (Jia and Peng, 2002).

8 The software BestFit (Palisade Corporation, integrated into the professional version of @RISK) is used to fit probability distributions to the simulated yield data.

9 Following Rola and Pingali (1993) and Pingali et al. (1994), human health costs are assumed to equal costs of insecticides.
simulation (Hardaker et al. 1997). From all resulting values \(NR_j \) of each strategy a cumulative distribution function (CDF) of net revenues for the pest control strategies is then generated. These are compared by applying the criteria of first-degree stochastic dominance (Equation 7) and second-degree stochastic dominance (Equation 8):

\[
F_1(x) \leq F_2(x) \leq \ldots F_j(x)
\]

\[
F_1 = \int_{-\infty}^{x} F_1(x) \, dx \leq F_2 = \int_{-\infty}^{x} F_2(x) \, dx \leq \ldots F_j = \int_{-\infty}^{x} F_j(x) \, dx
\]

Based on these two criteria the control strategies are ranked and the probabilities of negative net revenue of control are derived.

4. Results

The model shows that yields differ depending on the level of ecosystem disruption, i.e. yields are lowest in a highly disrupted ecosystem for all control strategies (see Figure 1). Yield variance among disruption levels is highest for the baseline scenario that relies entirely on beneficial organism for control and generally decreases with a higher degree of control intensity, i.e. more sprays and higher quality Bt. However, low quality Bt combined with high levels of insecticide use performs best. Thus surprisingly insecticides are more effective than high quality Bt.

To identify the factors that affect the productivity of control inputs, yields are regressed in a multivariate linear regression on the different control inputs. The sample is separated for the different levels of ecosystem disruption and the explanatory variables are the use of a Bt-variety and insecticides (both as dummy variable), additional dummies for the intensity of the control (high quality Bt-seed and intensive use of insecticides) and an interaction term for Bt toxin and insecticides. All parameters are highly significant (\(\alpha = 0.01 \)) and the overall fit of the model is high. The intercept is the yield level that is realized without crop protection intervention under the different levels of ecosystem disruption (compare baseline yields in Figure 1).

The most striking result is that the productivity of the control changes dramatically with increasing disturbance of the ecosystem. Consider first the case of zero disruption of natural enemies (coefficients displayed row one of Table 2). The use of a Bt-variety yields a meagre 146 kg of additional yield per hectare as compared to the non-Bt baseline. If high quality Bt-seed is used the disturbing impact on natural enemies is higher and hence yield increase is
even less. Similarly, the application of insecticides leads to a reduction in resulting yield as the disturbing effect of natural control outweighs the pest control effect of the applications.

A high intensity of control (Bt-variety and insecticide use) compensates for part but not all of the disruption caused by the control intervention. These results confirm findings from the literature on pesticide use (e.g. Ehler et al., 1974; Eveleens et al., 1974; Falcon et al., 1968) which have demonstrated the existence of the pesticide spiral. For the two scenarios with disrupted ecosystems, the baseline yield is lower (due to lower activity of natural enemies) and the use of external control is much more rewarding. The use of a Bt-variety adds 1.8 and 2.4 tonnes per hectare compared to the baseline for the 50 and 75% disruption, respectively. In principle the use of insecticides replaces natural control but the levels assumed for the simulation do not reach the impact provided by the Bt-variety. For these last two scenarios, a higher intensity of control increases the yield level further (positive coefficients for the Bt quality and insecticide intensity variables). A combination of insecticides and Bt-variety results in a relatively smaller return to the separate control measures (the interaction term of Bt-toxin and insecticides is negative).

For high ecosystem disruption, bollworm control pays off well with net revenues ranging from US$550 to US$1,150 per hectare at F(x) = 0.5 (see Figure 2). In this case S7 i.e. high level of insecticide use is stochastically dominant over strategy six because the negative ecosystems effect of low insecticides use exceeds its pest damage abatement effect. For a high degree of ecosystem disruption the use of low quality Bt seed and moderate insecticides use (S4) is the most economical cotton bollworm control strategy according to second-degree stochastic dominance.

For a medium disruption level and under the assumption that the decision-maker is risk averse, the low quality Bt seed without insecticide use is the best option. This strategy dominates strategy 1 (high quality Bt seed without insecticides) applying the criteria of second-degree stochastic dominance. For 0.5 ecosystem disruption, the modal values of the net revenues are lower and range from US$200 to US$750 per hectare. Finally, for an undisrupted ecosystem (Figure 3), natural control of cotton bollworm is the most economical strategy. Yet low-quality Bt seed without the application of chemical insecticides for bollworm might be an attractive strategy for risk averse farmers.

5. Conclusions

The bio-economic simulation model explains the observed decision-making behaviour of farmers in the study area. Overwhelmingly, they opt for the cheaper and lower quality Bt
seeds and continue to spray insecticide against the cotton bollworm. Model results also show the importance of the interaction between ecosystem disruption and pest control strategies. If farmers in China operate in an ecosystem, which has been disturbed by prior pest control interventions it is not surprising that the Bt technology shows good yield effects as measured against natural control. On the other hand, since both, insecticide applications and Bt varieties can reduce the population of beneficial organisms cross section comparisons between farmers using Bt with those who do not are flawed. The possibility that indiscriminate insecticide use may have a stronger side effect on beneficial insects does not validate conclusions drawn from such comparisons. Whether Bt varieties will actually reduce excessive levels of pesticides, diminish the level of ecosystem disturbance and hence cause additional environmental and health benefits requires the interaction between the state of the ecosystem and human interferences to be taken into account. Furthermore, static with and without comparisons ignore the possibility of emergence of secondary pests under Bt regimes resulting in additional pesticide use. Hence, the choice of counterfactual in impact assessment of agricultural biotechnology can pre-determine the results of such comparisons. To measure impact of Bt under on-farm conditions requires the availability of baseline data that allow the use of “difference in difference” models. As proposed by Yang et al. (2005), pesticide reduction is related to farmers’ understanding of the technology rather than the technology itself.

In the search for sustainable solutions, it is therefore worthwhile considering a situation without ecosystem disruption as baseline. Through such a comparison a clearer indication of the benefits of biotechnology technology and those of improving the institutional conditions that govern their use in farmers’ field in developing countries will be obtained. Possibilities would be crop protection policy reform and investments to improve farmers’ understanding of the ecosystem in the context integrated pest management.
6. References

Table 1: Overview of potential CBW control strategies

<table>
<thead>
<tr>
<th>Insecticide treatment</th>
<th>Seed choice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bt high quality</td>
</tr>
<tr>
<td>No spray</td>
<td>Strategy 1</td>
</tr>
<tr>
<td>Moderate spray (3 sprays)</td>
<td>Strategy 2</td>
</tr>
<tr>
<td>Farmers’ practice (6 sprays)</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 2: Linear regression results for different levels of ecosystem disruption

<table>
<thead>
<tr>
<th></th>
<th>Ecosystem disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Intercept</td>
<td>4,324.72</td>
</tr>
<tr>
<td>Bt toxin [dummy]</td>
<td>145.96</td>
</tr>
<tr>
<td>Bt quality [dummy]</td>
<td>-33.06</td>
</tr>
<tr>
<td>Insecticide [dummy]</td>
<td>-274.18</td>
</tr>
<tr>
<td>Insecticide intensity</td>
<td>-37.09</td>
</tr>
<tr>
<td>Insecticide * Bt toxin</td>
<td>216.92</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Intercept</td>
<td>2,308.72</td>
</tr>
<tr>
<td>Bt toxin [dummy]</td>
<td>1,757.36</td>
</tr>
<tr>
<td>Bt quality [dummy]</td>
<td>179.40</td>
</tr>
<tr>
<td>Insecticide [dummy]</td>
<td>996.67</td>
</tr>
<tr>
<td>Insecticide intensity</td>
<td>369.44</td>
</tr>
<tr>
<td>Insecticide * Bt toxin</td>
<td>-923.65</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>Intercept</td>
<td>1,193.47</td>
</tr>
<tr>
<td>Bt toxin [dummy]</td>
<td>2,392.67</td>
</tr>
<tr>
<td>Bt quality [dummy]</td>
<td>300.63</td>
</tr>
<tr>
<td>Insecticide [dummy]</td>
<td>1,782.63</td>
</tr>
<tr>
<td>Insecticide intensity</td>
<td>553.03</td>
</tr>
<tr>
<td>Insecticide * Bt toxin</td>
<td>-1,384.10</td>
</tr>
</tbody>
</table>

Adj. R²	0.869
	0.974
	0.981

Note: Dependent variable: yield in kg per hectare
Source: Estimated from the results of the biological model
Figure 1: Seed cotton yield [t ha⁻¹] for the control strategies (Baseline, S1 – S7) by degree of ecosystem disruption

Source: Results from the biological model
Figure 2: Simulation results of bio-economic model, 0.75 disruption
Figure 3: Simulation results of bio-economic model, 0 disruption